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Abstract

Building agents that generalize across web, desktop, and mobile environ-
ments remains an open challenge, as prior systems rely on environment-specific
interfaces that limit cross-platform deployment. We introduce Surfer 2, a
unified architecture operating purely from visual observations that achieves
state-of-the-art performance across all three environments. Surfer 2 inte-
grates hierarchical context management, decoupled planning and execution,
and self-verification with adaptive recovery, enabling reliable operation over
long task horizons. Our system achieves 97.1% accuracy on WebVoyager,
69.6% on WebArena, 60.1% on OSWorld, and 87.1% on AndroidWorld, out-
performing all prior systems without task-specific fine-tuning. With multiple
attempts, Surfer 2 exceeds human performance on all benchmarks. These re-
sults demonstrate that systematic orchestration amplifies foundation model
capabilities and enables general-purpose computer control through visual in-
teraction alone, while calling for a next-generation vision language model to
achieve Pareto-optimal cost-efficiency.
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Figure 1: Surfer 2 state-of-the-art performance on WebVoyager, WebArena, OSWorld E2E, and Android-
World. Human performance is indicated when available.



1 Introduction

Recent advances in Large Language Models (LLMs) and Vision-Language Models (VLMs) unlocked remark-
able reasoning capabilities for agentic use cases [1]. However, turning these capabilities into reliable, general-
purpose agents that operate autonomously in Graphical User Interfaces (GUIs) on complex, real-world tasks
remains challenging. In recent years, one dominant path has been to train increasingly large models with
minimal scaffolding like tool-call [2, 3] to improve agentic capabilities [4, 5, 6]. In contrast, this work presents
an alternative perspective: with proper orchestration and system design, existing state-of-the-art models can
achieve human-level performance and exceed prior systems across multiple benchmarks.

Prior approaches require environment-specific adaptations, such as DOM parsers for web navigation,
accessibility trees for mobile interfaces, or specialized APIs for desktop applications, limiting generalization
across diverse digital environments. This work introduces Surfer 2, a unified, hierarchical agent architecture
designed for complex tasks across desktop, web, and mobile environments using purely visual interaction.

Surfer 2 comprises three components: Orchestrator (optional high-level planner), a Navigator (low-
level GUI executor), and a Validator (evaluation module). Surfer 2 integrates third-party frontier models
and H Company’s Holol.5 models [7] in a design that separates long-term strategic planning from short-
term tactical execution. A key design insight in Surfer 2 is architectural flexibility. It can enable or bypass
the Orchestrator to match task complexity. For long-horizon problems, the Orchestrator runs as a high-
level planner in the plan-and-act style [8], where it decomposes the user task into verifiable goals, plans
ahead, and delegates targeted subtasks to the Navigator. For simple tasks, the Orchestrator is bypassed
and the Navigator is invoked directly. Built on our previous SurferH agent [9], the Navigator follows a
ReAct (reason+act) loop [10]. It perceives the environment purely via screenshots, reasons about the next
step, and executes constrained keyboard and mouse-level controls with pixel-accurate Ul localization from
Holol.5. Upon subtask completion, a Validator inspects the latest screenshots, the execution history, and
the proposed answer to assess subtask success in one of two ways: (1) if the Orchestrator is enabled, it
leverages the Validator’s report and either advances to the next subgoal or replans accordingly, or (2) if the
Orchestrator is disabled, the Validator’s feedback is sent directly to the Navigator, which integrates it into
its reasoning and continues the ReAct loop until the task is completed or a termination condition is reached.

Without task-specific fine-tuning, Surfer 2 attains state-of-the-art results on four major benchmarks
spanning different Computer Use environments (web browser, desktop, mobile): WebVoyager [11] and We-
bArena [12], OSWorld [13], and AndroidWorld [14]. On OSWorld and AndroidWorld, Surfer 2 surpasses the
human baseline, underscoring that expert agent design is as crucial as model capability.

2 Related Work

The development of Computer Use agents capable of controlling computers, web browsers, and mobile devices
represents a key frontier in Al. In many real-world scenarios, agents encounter tools and software for which
no API or Model Context Protocol (MCP) is available, leaving GUIs as the only viable control surface.
Consequently, recent research has focused on enabling general-purpose agents to perceive, reason about, and
act within GUIs, transforming visual interaction into a universal interface for autonomous computer use.

2.1 Agents for GUI Control

The development of agents capable of controlling computers through their graphical interfaces has been a
long-standing goal in Al. Early work focused on script-based or rule-based systems for automating specific,
repetitive tasks [15]. Subsequent research introduced reinforcement learning (RL) and computer vision
techniques for GUI automation [16, 17]. Recent advances leverage large language models (LLMs) and vision-
language models (VLMs) for more generalized and adaptable control [11, 13].

2.1.1 Browser Use Agents

Web navigation agents are a highly active research area, with benchmarks like WebVoyager [11] and We-
bArena [12] providing standardized evaluation environments. Early methods often relied on interpreting
the Document Object Model (DOM) to understand a page’s structure and content [18, 19, 12, 20]. While



effective, these text-based approaches struggle with visually-rich elements, dynamic content, or situations
where visual layout and context are crucial for task success.

Our work operates on a fundamentally different, multimodal principle: we use image-based states (screen-
shots) as the primary input, following the approach of Surfer-H [9]. This enables our agent to perceive and
interact with the digital environment in a more human-like way, leveraging the visual understanding of large
multimodal models (LMMs). Previous works have already explored this path; for instance Set-of-Marks
[11] augments screenshots with labeled bounding boxes for each UI element and refers to these labels when
issuing clicks. In contrast, our approach operates directly on unaltered screenshots and predicts raw pixel
coordinates. Other approaches apply reinforcement learning to learn skills from scratch [21, 22, 10], whereas
we achieve superior performance without task-specific fine-tuning. Our work, similar to [23], focuses on
architectural improvements rather than model training.

2.1.2 Desktop Computer Use Agents

Beyond the web, agents for general Computer Use present unique challenges due to the heterogeneity of
application interfaces, multi-app workflows and the requirement for system-level control. OSWorld [13] has
emerged as a leading benchmark for desktop automation with tasks focusing on Ubuntu, evaluating agents
across diverse applications such as LibreOffice, GIMP, VS Code and the OS system. Complementing it,
WindowsAgentArena [24] provides a very similar suite of tasks for Windows-based environments.

Early efforts in Computer Use were open-source, and include OSAtlas [25] and Aguvis [26]. These
established the foundation for developing and evaluating vision-language-action agents capable of operating
within general computer environments. Subsequent research, such as [27, 28, 29, 30, 31, 32, 33|, has since
expanded upon these efforts, exploring diverse architectures and training paradigms to enhance reasoning,
perception, and control capabilities. Closest to our work, Agent S3 [34] introduces Behavior Best-of-N
(bBoN), where it generates multiple parallel trajectories and then selects the most successful one. To
make this selection feasible, it first converts dense, raw trajectories into concise “behavior narratives” that
summarize the agent’s actions and their effects. A judge model then compares these narratives to pick the
best rollout. Agent S3 can also invoke a coding agent to perform programmatic edits such as bulk operations,
file transformations, and structured parsing.

2.1.3 Mobile Use Agents

Over the last two years, the field of mobile agent research has grown with the introduction of the Android-
World [14] benchmark, which provides a rigorous testbed for agents that require touch-based interactions
and multi-app workflows, and the Android in the Wild (AITW) dataset [35, 36, 37]. Research in this area,
including work like [38, 39, 19, 40, 41], has focused on developing and training specialized models capable of
interpreting mobile Uls and executing gestures. While these works demonstrate the power of model-centric
approaches, our architecture proves that the same level of performance can be achieved by orchestrating
existing models, accommodating the visual and interactive distinctions of mobile platforms.

2.2 Frontier Models for Agents

The performance of modern GUI agents is inextricably linked to the capabilities of the underlying frontier
models, particularly LLMs and VLMs. Models like GPT-4.1 [5], 03 [42], Claude 4.5 Sonnet [4], and Gemini
2.5 [6] have demonstrated exceptional abilities in multimodal reasoning, zero-shot generalization, and long-
context understanding. While many studies have focused on scaling up models [19] or fine-tuning models on
large, domain-specific datasets [36, 37], our work takes a different direction. We employ frontier models and
demonstrate that a carefully designed system can achieve state-of-the-art results.

2.3 Localization Models

Accurate user interface (UI) element localization remains a key technical challenge for GUI agents operating
on visual data. The agent must infer the precise coordinates of a target such as a button, text field, or
icon from a screenshot, often conditioned on a natural-language description. This task, known as visual
grounding, has motivated the development of specialized vision-language models designed specifically for



UT contexts. For instance, UI-TARS [27], Holo1.5 [9, 7], and CogAgent [19] are models specifically trained
for localizing UT elements. Our system relies on Holol.5 [7], a specialized localization model, to bridge the
gap between the agent’s high-level action plan (e.g., “click the ’Submit’ button”) and the pixel-level action
required for execution. Our work highlights how effective orchestration and integration of such specialized
models are as important as their individual capabilities.

2.4 Agent Architectures and Learning Paradigms

Our work on a hierarchical, multi-agent framework builds on established principles in reinforcement learning
(RL) and agent design, but it fundamentally differs by employing off-the-shelf models without training. The
concept of separating high-level planning from low-level execution has been explored in various contexts [8,
43], including in GUI agent frameworks that use experience-augmented hierarchical planning and internal
experience retrieval to address long-horizon tasks [44]. A notable example in the mobile domain is the
K2-Agent framework [45], which explicitly separates a high-level, training-free planner from a low-level,
learning-based executor. Our system extends these ideas through a persistent environment state and robust
validation mechanisms, ensuring consistency and recoverability across extended workflows. Our use of a
planner coordinating sub-agents is a form of multi-agent orchestration, similar in principle to [23].

Our system’s self-correction and validation loop relates to recent work on autonomous evaluation and
refinement of agent behavior [46, 10], particularly in methods that reinforce agents through linguistic feedback
and reflective episodic memory rather than weight updates [47]. The use of an external verification module
aligns with research on using language models for critique and dense rewards [48]. However, unlike many of
these approaches that rely on offline or online RL to update model weights [49, 50, 51, 52, 53, 54, 41], we
do not perform any parameter updates. Instead, our findings highlight that coordination and self-correction
at the system level can substitute for learning at the model level. We show that even in-context learning,
without any gradient updates, can achieve remarkable performance, similar to previous findings [55, 56].

3 Agent Architecture

We outline the components required to build Surfer 2 as shown in Figure 2.

3.1 Design Philosophy

The design of our architecture follows five core principles. First, we adopt a separation of concerns:
high-level planning, managed by the Orchestrator, is decoupled from low-level execution handled by the
Navigator, allowing each component to specialize and improve independently. Second, we employ an auto-
matic hierarchical context mechanism, giving each component access to relevant global information such
as the overarching goal, current plan, completed work, and immediate subtask while maintaining scope-
specific focus. Third, we ensure a shared environment state, in which elements like browser sessions
or open applications persist across subtasks and components, enabling incremental progress in dynamic en-
vironments. Fourth, we emphasize explicit validation through multi-stage verification processes to limit
error propagation and promote self-correction. Finally, we employ chain-of-thought reasoning with all
modules except the Localizer, reasoning explicitly in natural language for better long-horizon performance.

3.2 Orchestrator

Main roles. The Orchestrator shoulders three key roles simultaneously. As a planner, it decomposes
the user goal into sequential, verifiable subtasks and delegates their execution to the Navigator. As a
coordinator, it evaluates the Navigator’s outcomes and Validator feedback to detect potential errors or
incomplete progress, and replans when necessary to recover from failures. Finally, as a communicator,
it decides when to terminate and synthesizes validated results into a coherent final response. The system
operates hierarchically: the Orchestrator maintains the global plan and reasoning loop, while the Navigator
executes grounded actions within its own local observation—action cycle. This organization ensures efficient
task management and robustness through explicit verification and adaptive recovery.
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Figure 2: Surfer 2 architecture: an optional Orchestrator plans, the Navigator acts via a Holo1.5 Localizer,
and a Validator provides feedback.

Orchestrator Memory. At each decision step, the Orchestrator maintains the overall task objective, the
current plan, its execution status, a history of all past interactions with the Navigator, and the latest visual
observations from the environment. This persistent state enables the Orchestrator to track progress, learn
from previous attempts, and make informed decisions about when to continue, replan, or terminate.

Adaptive planning. Surfer 2 employs an adaptive strategy for deciding between single-call execution
and multi-step planning based on task complexity heuristics. For simple tasks, the Navigator is directly
invoked. For complex tasks involving multiple phases, cross-referencing information, or dependent subtasks,
the Orchestrator is triggered to create an explicit plan that breaks the task into a sequence of manageable
goals. After each Navigator execution, the Orchestrator analyzes its task report, updates the current goal
status, and updates its plan with a mitigation strategy if failures have been detected. The Orchestrator



has 4 available actions, which balance high-level planning (create_plan, replan) with tactical execution
(delegate) and external communication (answer).

3.3 Navigator

Our Navigator agent is an improved version of the previous agent Surfer-H [9] that now operates across web,
desktop, and mobile environments. It extracts relevant information through note-taking, generates action
sequences with Ul grounding, and verifies task completion through integrated validation. Its vision—language
policy interprets the current environment state and past trajectory to produce a structured output consisting
of a note (information extracted from the latest observation), a thought (reasoning about the next step),
and an action (the operation to execute). The localizer optionally grounds localizable actions to screen
coordinates, enabling interaction with specific UI elements. Finally, the environment executes the grounded
action and returns a new screenshot observation of the state. When the policy issues an answer action
to signal task completion, the Validator assesses the result’s completeness and correctness before allowing
termination, providing a crucial safeguard against premature or inaccurate responses.

3.4 Localizer

The localizer bridges the gap between textual element descriptions (provided by the Navigator) and precise
screen coordinates, a critical capability for reliable action execution. It grounds any UI element references
in the action to precise screen coordinates, converting textual descriptions like “blue submit button” into
clickable (x,y) coordinates. This visual grounding problem is fundamental to GUI automation, as even
small localization errors can cause actions to miss their intended targets entirely. We use Holo1.5 models as
Localizer throughout our experiments.

3.5 Validator

Validation is a critical component for preventing premature termination and ensuring answer quality through
systematic verification, inspired by prior work on self-reflective agents and feedback-driven verification mech-
anisms [57, 58]. The Validator examines the Navigator’s complete execution trace including the task speci-
fication, reasoning history, sequence of actions, proposed answer, and the most recent k screenshots. It then
determines whether the solution satisfies the task requirements based on observable evidence. This VLM-as-
a-Judge operates at two levels of the system hierarchy. Within the Navigator, it evaluates each answer action
before allowing termination: if validation fails, the Navigator resumes execution with the Judge’s feedback
integrated into its context, enabling self-correction; if validation succeeds, the episode concludes and the
answer is returned. At the Orchestrator level, the Validator’s assessment is combined with the Navigator’s
final report, allowing the Orchestrator to decide whether to accept, refine, or replan the outcome.

4 Evaluation Methodology

We evaluate our system on four major benchmarks spanning web, desktop, and mobile environments: Web-
Voyager [11], WebArena [12], OSWorld [13], and AndroidWorld [14]. All experiments employ models without
any task-specific fine-tuning, isolating the contribution of our hierarchical agent architecture from model im-
provements. This experimental design demonstrates that superior performance can be achieved through
careful system design and agent orchestration alone, independent of model scale or domain adaptation.

4.1 Benchmarks

Here, we outline the main characteristics of the benchmarks we use and briefly describe each of them.
Comprehensive details, including task distributions, evaluation metrics, and corrections to prior evaluation
inconsistencies, are presented in Appendix A.



Key benchmark characteristics. Multi-step reasoning: Tasks require sequential actions with con-
ditional branching based on intermediate observations, assessing the agent’s ability to plan and adapt over
long horizons. Real-world environments: Benchmarks rely on realistic environments, such as actual
websites (WebVoyager, WebArena), production desktop applications (OSWorld), and authentic mobile apps
(AndroidWorld) rather than simulators, exposing agents to dynamic content, varied layouts, and real-world
edge cases. High-precision visual grounding: Success depends on accurate localization of UI elements
within pixel-dense screenshots, where small coordinate errors cause action failures, demanding tight inte-
gration of vision and language reasoning. Diverse interaction modalities: The benchmark suite spans
mouse/keyboard control (desktop), touch gestures (mobile), and hybrid web interactions, ensuring that our
orchestration framework generalizes across fundamentally different action spaces and environment dynamics.

WebVoyager consists of 643 tasks spanning 15 popular websites in its original formulation, including
e-commerce, travel, and information platforms (e.g., Amazon, Booking.com, ArXiv). These tasks require
complex agent interactions such as visually grounded information retrieval, comparison, and multi-step
form completion. However, the dynamic nature of live websites introduces instability that can render tasks
obsolete. To ensure experimental comparability, we adopted the curated 590-task subset established by
Magnitude [59]. Details on access restriction mitigations are available in Appendix A.1.

WebArena is a suite of 812 tasks designed to test navigation capabilities across diverse web environments,
including an e-commerce site, a social forum, a GitLab instance, a content management system, and a map
interface. Refinements were made to the original WebArena implementation (see Appendix A.2).

OSWorld spans 369 real Computer Use tasks on Ubuntu systems, spanning production applications such
as LibreOffice, GIMP, Chrome, Thunderbird, VS Code, and VLC. Tasks test realistic workflows includ-
ing document editing, image manipulation, email management, and multi-application coordination and are
scored through deterministic programmatic checks. We focus on the Foundation E2E GUI category, which
constrains the agent’s action space to human-performable GUI operations: mouse clicks, drags, keyboard
inputs, and shortcuts without calling APIs or executing code. This setting is the most representative of true
Computer Use capability, as it requires agents to perceive and act directly on arbitrary interfaces rather
than relying on handcrafted integrations. By contrast, the broader OSWorld All category permits code-level
operations (e.g., Python snippets or API calls) that can bypass interface-level reasoning, potentially inflat-
ing scores through tool-specific shortcuts rather than genuine GUI understanding. We therefore evaluate
Surfer 2 in the stricter Foundation E2E GUI regime and compare it against competitors within that cate-
gory, emphasizing generalization to unseen applications and fidelity to human interaction. For context, the
current highest score in the “All” category is held by Agent S3 at 69.9% accuracy [34].

AndroidWorld evaluates mobile agent capabilities across 116 tasks spanning the Android OS itself and
20 real-world applications. These tasks require touch-based interactions, app navigation, and multi-app
workflows verified through Android Debug Bridge (ADB)-based state inspection. Each task is scored with a
verification metric in {0, 0.5, 1}, corresponding to failure, partial success, and success, respectively. Impor-
tantly, the Android Emulator provides access to the accessibility tree (ally), which agents can leverage to
perform tasks. To better demonstrate the performance of our unified agent, we deliberately avoid using this
accessibility tree and instead rely solely on visual (screenshot-based) inputs.

4.2 Configuration

For each benchmark, we adapt the model configuration and component selection to the specific environment
and task complexity, as determined through ablation studies (see Table 1. In WebVoyager and WebArena,
the Orchestrator operates for up to 20 steps, while the Navigator may take up to 50 steps to complete
navigation subtasks. For OSWorld and AndroidWorld, the agent runs without an Orchestrator, relying
solely on the Navigator for both planning and execution. In OSWorld, we enforce a minimum of 15 and
a maximum of 100 steps to prevent premature termination. Once the upper limit is reached, the agent’s
memory is cleared without resetting the environment enabling continued progress while keeping the context



Table 1: Model configuration across benchmarks.

Benchmark  Orchestrator Navigator

Policy Judge Localizer
WebVoyager 03 Claude Sonnet 4.5 GPT 4.1 Holol.5 7B
WebArena 03 Claude Sonnet 4.5 03 Holol.5 72B
OSWorld None Claude Sonnet 4.5 03 Holol.5 72B
AndroidWorld None 03 03 Holol.5 72B

length bounded. In AndroidWorld, the step limit is set to 150, reflecting the higher difficulty of certain tasks
(e.g., OsmAndTrack which has an empirically determined optimal horizon of roughly 60 steps).

5 Results

In this section, we describe both qualitative and quantitative main results obtained on the four benchmarks.

5.1 WebVoyager

Surfer 2 establishes a new state of the art on the WebVoyager benchmark, achieving a 97.1% success rate and
surpassing the previous best performance of 93.9% [59]. This strong performance is consistent across nearly
all tested websites (see Figure 3), with the exception of the Cambridge Dictionary domain, where anti-bot
measures such as CAPTCHAs hindered execution. Surfer 2 achieves a perfect 100% pass@10, effectively
saturating the benchmark using test-time scaling. In a localizer ablation study, substituting Holo1.5 7B
with UI-TARS 7B [27] reduced performance to 94.7%, confirming that Surfer 2 ’s gains derive from the
combination of high-quality components and effective orchestration.

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
100 97.8% 97.6% 97.5% 97.5% 97.1% 95.0% 04.9%
81.4%

80
S
2

S 60
[
1
o
o
3

®» 40

20

0

® S S & © & N
& & & &“ & A O
oc» @“ v & S ) v\\\ & ® @ Ko
o Qe)q 6& 2 & &
W © &
N
K

Figure 3: Per-website performance of Surfer 2 on the WebVoyager benchmark.

5.2 WebArena

Surfer 2 reaches a new state-of-the-art with a pass@1 success rate of 69.6% on WebArena. The agent
performed robustly on social media tasks, e.g., 77% on Reddit, while struggling with e-commerce workflows,
averaging only 58% on shopping sites. Many tasks in this domain remain challenging, see Figure 4.
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Figure 4: Per-domain performance of Surfer 2 on the WebArena benchmark.

Test-time scaling. Sampling multiple independent trajectories of Surfer 2 leads to a substantial perfor-
mance gain from 69.6% with pass@1 to 84.9% with pass@10. Scaling parallel trajectories primarily expands
task coverage, revealing what the agent can do rather than increasing single-run reliability. The diversity of
successful paths indicates that most residual failures arise from local exploration traps rather than systematic
reasoning errors. High task coverage offers a valuable signal about the agent’s effective action space and
highlights its potential for reinforcing successful behavioral patterns through model training.

5.3 OSWorld

Surfer 2 achieves a state-of-the-art success rate of 60.1% on OSWorld in the Foundation E2E GUI category.
With five attempts (pass@5), performance rises to 72.0%, closely matching the human baseline of 72.4%. At
ten attempts (pass@10), Surfer 2 surpasses human performance with 77.0%. In Figure 5 we report success
rates across task categories; in all of them, Surfer 2 exceeds the accuracy of 50%, performing especially well
on programming-related tasks in environments like VSCode and OS. Interestingly, Surfer 2 completed several
tasks labeled as infeasible by human evaluators, which were excluded from our success rate (see Figure 8).

Localizer ablation. Within the same agentic framework, Holol.5 72B Localizer achieved the highest
performance, reaching 60.1% compared to 58.4% for Holol.5 7B and 56.9% for UI-TARS 7B [27]. This
confirms the importance of accurate spatial grounding for GUI reasoning: Holo1.5 generalizes more effectively
to diverse Computer Use interfaces, enabling precise GUI interaction.

5.4 AndroidWorld

Surfer 2 achieves an accuracy of 87.1% across the 116 tasks, surpassing all previous approaches relying solely
on visual interaction [60, 45]. Figure 6 shows the agent’s success rate across difficulty levels as defined in
the original AndroidWorld paper. It achieves a near-perfect performance on Easy tasks (98.4%), maintains
strong results on Medium tasks (86.1%), and shows a notable drop on Hard tasks (52.6%). This trend
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Figure 6: Surfer 2 accuracy per difficulty category on AndroidWorld.

tasks requiring long-horizon reasoning or intricate multi-step coordination.

Performance per category. Performance varies across categories (Figure 7), with memorization and
transcription (both 50%) identified as the most difficult due to limited memory and text handling, and
multi-app tasks (37.5%) remaining the primary challenge for robust cross-application reasoning.

Test-time scaling. Allowing a small retry budget yields consistent improvements on AndroidWorld:
pass@1 reaches 87.1%, pass@2 improves to 90.5% (+3.4%), and pass@3 climbs to 93.1% (+6.0% over pass@1).
These gains indicate that a modest number of parallel attempts recovers many near-miss failures, suggesting

51.1%

that most errors arise from stochastic perception or planning rather than fundamental limitations.

11
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Figure 7: Surfer 2 accuracy by task category on AndroidWorld.

Localizer ablation. Substituting Holol.5 with UI-TARS reduces pass@1 success from 87.1% to 81.9%
(—5.2%) on AndroidWorld, indicating the localizer as performance bottleneck. A drop in accuracy in lo-
calization of interactions with small targets and iconographic widgets cascades into incorrect actions. This
ablation underscores that the spatial grounding from Holo1.5 is crucial for end-to-end reliability.

Implications. Surfer 2 effectively manages complex multi-app, multi-step workflows. The remaining chal-
lenges lie in (i) real-time perception, (ii) maintaining memory over long sequences, and (iii) stronger GUI
semantics—particularly learning app-specific visual conventions and icon mappings.

6 Key Insights and Path Forward

Our empirical evaluation reveals critical factors for agent success. Prompt engineering proves surprisingly
impactful, with minor wording changes yielding 5-10% accuracy swings, underscoring the sensitivity of
LLM reasoning to input formatting. Model variance remains substantial even at temperature 0 for the
judge, necessitating multi-sampling strategies to achieve robust performance. Persistent context across
subtasks reduces navigation steps required by 30-40%, proving essential for multi-goal tasks that build on
prior subtasks. Multi-stage validation intercepts 15-20% of errors before propagation, while Orchestrator’s
hierarchical decomposition provides natural retry boundaries and improved interpretability.

Despite achieving human-level performance on complex tasks, several bottlenecks constrain practical
deployment. Stochastic model outputs require expensive multi-sampling for reliability, with Orchestrator
costs reaching $1-5 per complex task when using frontier reasoning models. Even state-of-the-art localiz-
ers fail on 5-8% of UI elements due to dynamic content and ambiguous descriptions. Long-horizon tasks
exceeding 50 steps face context window limits and compounding errors, while LLM-based evaluation itself
carries 5-10% error rates that complicate benchmarking.

Our results demonstrate that proper agent orchestration with fixed, general-purpose models can achieve
state-of-the-art accuracy, with modular designs generalizing across web, desktop, and mobile environments.

While the principles of agent orchestration are approaching maturity, the remaining bottlenecks — cost,
variance, and speed — limit practical, real-world deployment. The path forward lies in resolving these chal-
lenges. To address this, we are focusing on developing a new family of smaller, specialized models, to achieve
comparable, if not superior, performance at a fraction of the current cost, reaching Pareto optimality [9].
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A Appendix

A.1 WebVoyager Evaluation

e Description: 590 tasks across 15 websites: Amazon, Apple, Google Flights, Booking.com, ArXiv,
GitHub, Hugging Face, Coursera, BBC News, Cambridge Dictionary, Allrecipes, Google Maps, Bing
Search, ESPN and Wolfram Alpha.

e Task types: Information retrieval, comparison and navigation.

e Evaluation: We updated the evaluation protocol by replacing the single GPT-4V judge with a ma-
jority vote over 3 GPT-40 judge calls (temperature 0, using last 5 screenshots), retaining the original
WebVoyager evaluation prompt. This ensemble method is designed to reduce variance, mitigate single-
judge bias, and prevent spurious results from isolated errors, thereby yielding more reliable and robust
evaluations.

e Environment: Live websites on Selenium-controlled Chrome. Running this benchmark introduces
practical challenges, such as bot-detection mechanisms like CAPTCHAs and IP-based access blockers.
To mitigate these restrictions, we employed proxy rotation and redirected all Google-dependent tasks
to Bing Search, as in [9], to ensure uninterrupted execution.

A.2 WebArena Evaluation

e Description: 812 tasks across self-hosted 6 websites: GitLab, Reddit, an E-commerce website called
OmneStopShop, an online store content management system (CMS), OpenStreetMap and the English
Wikipedia.

e Task types: Information retrieval, comparison, navigation, multi-step and multi-websites actions,
involving form filling and search across one or two websites. To improve grounding and consistency,
we added lightweight, category-specific initialization prompts, loosely inspired by OpenAl’s per-site
prompting approach [61].

e Evaluation: modular evaluation framework consisting of three criteria that can be combined or used
independently:

— URL Match: The agent’s final URL must match a predefined target.
— HTML Artifact: A required success artifact must be present in the final page’s DOM.

— Model-based Assessment: A language model evaluates the correctness of the final output using
majority voting with 5 GPT 4.1 judges.

e Environment: Controlled web servers with fixed initial states accessed using Selenium-controlled
Chrome.

A.2.1 Methodological Difficulties with WebArena.

Technical challenges. While WebArena is a valuable benchmark, its evaluation poses several method-
ological challenges. The benchmark requires self-hosting of its websites, a process that is not seamless and
which required manual intervention, notably to resolve issues in the OpenStreetMap environment. Its highly
stateful design further complicates reproducibility, as tasks are interdependent and their outcomes can be
affected by residual states from previous runs. These characteristics also make large-scale parallel execution
impractical, substantially increasing the computational cost and time required to obtain robust metrics
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LLM-as-a-Judge. The benchmark’s original evaluation framework integrated programmatic checks of the
final state with a single LLM-based assessment. We improved its rigor by replacing heuristic string matching
(e.g., exact-match or keyword checks) with an ensemble of five independent GPT-4.1 judges, aggregated
by majority vote. This approach reduces variance, mitigates single-judge bias, penalizes false positives in
must include tasks where substring matching previously sufficed, and allows minor, semantically irrelevant
variations in ezact match tasks that would otherwise fail under literal comparison. Given that WebArena
contains 176 must include tasks versus only 45 exact match tasks, our methodology provides a more balanced
and reliable assessment.

Task Corrections. We conducted a manual review of the benchmark dataset [62], resulting in the cor-
rection of 71 tasks with erroneous labels. The scope of these modifications ranged from minor typographical
fixes to the resolution of critical logical inconsistencies that fundamentally affected evaluation outcomes.
A summary of these corrections is provided in Table 2. For a transparent comparison, we conducted an
ablation study without these manual fixes, relying solely on a Large Language Model (LLM) as the judge
for string comparison. In this configuration, our approach achieves a success rate of 67.4%, a result that still
surpasses the previous state-of-the-art performance.

Table 2: Summary of WebArena corrections with examples.

Category Description Example correction
Data accuracy corrections Rectifying errors in numerical values (e.g., quantities, Corrected order count from “24
measurements, prices), and making corrections to specific names  orders” to “21 orders”
or entities to reflect the correct data. (Task 50).
Typographical and Addressing simple spelling errors in task fields such as intent, Corrected “canlled” to
spelling fixes intent_template, or instantiation_dict to improve clarity. “cancelled” (Task 202).
URL and task focus Updating URLSs, parameters, and location references to ensure Updated URL parameter from
updates that tasks point to the intended content or have a more precise sort=created.asc to
focus. sort=created_date (Task 45).
Evaluation flexibility Replacing specific data points (e.g., domains) with flexible Replaced a specific domain
improvements placeholders to make the evaluation process more robust against  with the placeholder:
variations in expected outputs. <fuzzy_general_domain>
(Task 293).
Consistency and Standardizing date formats, ensuring consistent phrasing, and Standardized proximity
formatting edits adding URL parameters to control the number of items displayed phrasing by replacing “around”
for a uniform evaluation environment. with “near” (Task 378).

A.3 OSWorld Evaluation

e Description: 369 tasks on Ubuntu Desktop. They involve different applications: LibreOffice Calc,
LibreOffice Impress, LibreOffice Writer, Thunderbird, Gimp, OS, Chrome, VS Code, VLC. The task
can involve several applications at the same time.

e Task types: document editing, image manipulation, email, file management, settings modifications,
data analysis, coding, etc. The complexity of the tasks varies significantly (10-100 steps).

e Evaluation: Programmatic checks of final file/application state.

e Environment: AWS-hosted Ubuntu VMs, 1920x1080, VNC control.

A.4 AndroidWorld Evaluation

e Description: 116 tasks on an Android Emulator (Pixel 6 device). Tasks are specified as parameterized
templates instantiated at runtime, requiring the agent to interact with apps such as Markor (notes),
VLC (video), OpenTracks (activity tracker), Simple Calendar, Tasks.org, SMS, Contacts, Files, Cam-
era, Audio Recorder, OsmAnd (maps), Retro Music Player, Recipe and Expense managers, Clock, and
system settings, emphasizing multi-app, multi-steps workflows.
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e Task types: Data entry/edit, information retrieval and search/navigation, screen reading and tran-
scription, math/counting, verification, memorization/repetition, multi-app workflows, complex UI un-
derstanding, parameterized inputs, requires setup, game playing.

e Evaluation: Programmatic checks of final device and application state via the Android Debug Bridge.
For information retrieval tasks, validation through exact or fuzzy matching. Each task is assigned a
score of 1, 0.5, or 0 for success, partial success, or failure, respectively.

e Environment: Dockerized Android emulator (Pixel 6 device, 1080x2400 pixels, API level 33). Due
to SIM card constraints, SMS-related tasks were executed outside the Docker containers.

B Examples
B.1 OSWorld Example

To illustrate Surfer 2 ’s adaptive behavior in desktop environments, we highlight one notable case where
the agent successfully solved a task labeled as infeasible by human evaluators. For instance, it successfully
changed Chrome’s interface language to Korean—a task deemed impossible due to the absence of a visible
language selector (see Figure 8). Instead of reporting failure, Surfer 2 opened a terminal, executed system
commands via visual interaction, and relaunched Chrome, showcasing adaptive reasoning beyond predefined
task boundaries through the integration of interface understanding and system-level knowledge.

B.2 AndroidWorld Examples

To contextualize aggregate metrics, we highlight one complex success (Figure 9a) and one representative
failure (Figure 9b).

19



® Google Chrome. oct10 19:44 11

v @ settings-Languages  x +

< © ®chrome chrome:/ettings/ianguages

@ Settings Q search sttings

Youiml Gosole Preferred languages.
B Autofill and passwords
@ Privacy and securiy Webstes il show conent i your prefered anguages,when possible

@ performance

Appearance
oo 2 Enghsh (United Kingdorn)

@
Q Searchengine T anguage s used whe anclating pages
O Defauhtbrowser 3 enghah Uned sate)
© onstartap .
® Languages
Spelcheck

Downloads
FFa— Chec for speling srors when you yp et on web pges
A system ©  sosispelcneck
O Resetsetings O ennanced sell check

Usesthe same spellchecker thats used in Google search.Tex hat o

Inthebroyser s sent 9 Google

»

Exensions (5

Usespellcheck for
About Chrome

®

Korean

Englich Uniod Kingdom)

Englsh Unied Sates)

Englisn

Customise spel check

& Terminal

user@user-virtual-machine:
L fusr/share,
7 19:
S pk d -1 's|2Ex Exec=env
bin/google “lang=ko x|’
desktop
comnand as another user tsnissed
S1s -la a ur proforod anguagos, when possible

0_KR.UTF-8 LANGUA
1 :

0_KR.UTF-8 Jusr/ al/share/applt

ations/googL
ations/google.
usr /bin/google-chrone-stable

fusr /bin/google stable

_KR.UTF-8 /usr/bin/google-chrone-stable

& Downloads

Gheck forspeling eors hen you type text on web pages

T Accessibilty
A system ©  easicspalicheck
D Resetsetiings O Enhanced spel check

Uses thesame spellchacker thts.

Inthe browser s sent 1 Googe
# Extensions [

Usespellcheck for
®  About Chrome

Korean

Englsh United kingdom)

Englisn

Customise spolcheck

oct10 2003

din Google search. Tt that you e

Add languages

Add languages

Relaunch to update

Finish update

Q. Google

DD DM

e +

s #5t

Figure 8: Surfer 2 switching Chrome’s language to Korean via the terminal.
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Actions speak louder than words.

[ LD Copy j [ fed Nearby]

No recommended people to share with

AT e .
Markor Broccoli Joplin OsmAnd

New Recipe

ht Expand share sheet full to reveal Simple
SMS Messenger option.

Action {"action™: "swipe_element", "description™:
"Swipe up on share sheet area to expand and show all
apps", "x_touch": 0.503, "y_touch": 0.949, "x_lift":
0.503, "y_lift": 0.219, "duration": 500}

(a) (Success) MarkorCreateNoteAndSms: The
agent creates a new note in Markor with the text “Actions
speak louder than words.”, then shares it via Simple SMS
Messenger. This requires cross-app coordination (Markor
— SMS), which Surfer 2 executes by creating the file, us-
ing the share action, and selecting the SMS app.

38 @

ZWUN_moment_7u_mp4

Thought Current frame text: Emilia at O:
full list from start.

. o«

Action {“action”: “swipe_element”, “description”:
“Swipe Drag seekbar thumb to far left beginning”,
“x_tou .575, “y_touch”: 0.154, “x_lift": 0.095
, “y_lift”: 0.154, “duration”: 500}

(b) (Failure) MarkorTranscribeVideo: The agent
transcribes per-frame text from a VLC video into a
Markor note. Despite reaching the correct context, lim-
ited temporal memory and sparse frame capture result in
partial transcription and omissions, revealing difficulties
in maintaining continuity over extended visual sequences.

Figure 9: Representative success and failure cases on AndroidWorld. Surfer 2 demonstrates robust cross-app
reasoning but still struggles with long-horizon temporal perception.
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